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Anomaly on a submanifold system-new index theorem 
related to a submanifold system 

Shigeki Matsutani 
2-4-1 I Sairenji. Niihama, Ehime 792, Japan 

Received 27 June 1994 

Abstract. Recently the submanifold quantum system has been studied. In this article, after we 
confine a D i m  field in a thin curved rod, we find an anomalous term in the fermionic field 
theory related to the extrinsic curvature. In other words, we find a new Atiyah-Singer-type 
index theorem related to the geometry of the submanifold. As the anomaly is associated with 
the nonlinear Schr6dinger equation as a loop soliton, we also discuss it. 

1. Introduction 

The quantum submanifold system is studied in material science (da Costa 1981, Matsutani 
1993a). It was found by Jensen and Koppe (1971) and formulated by da Costa (1981) for a 
general shape of the submanifold in threedimensional space R3. After quantizing a particle 
over R3, we confine a particle in a submanifold in terms of a confinement potential. Its 
properties are different from those of the manifold quantum system, which is well known 
in elementary particle and gravitational physics (Birrell and Davies 1982). In submanifold 
quantum mechanics the extrinsic curvature plays an important role, though in manifold 
(without boundary) quantum mechanics it does  not.^ 

Furthermore it also differs from quantum mechanics on a submanifold in terms of the 
Dirac constraint scheme with a certain condition. If a surface in R3 is expressed by f = 0, 
one can impose f = 0 as the Dirac constraint and formally quantize a particle over the 
surface (Ikegami et al 1992). However, the f = 0 condition seems to be incompatible with 
the principle of differential geometry and kinematic theory; in these theories, the equation 
is given locally and, after integration, we obtain global information, e.g. the manifold. This 
result does not, therefore, agree with that from submanifold quantum mechanics to which 
we have already referred. However, there is another choice: we can make a particle satisfy 
the condition f = 0 in terms of the Dirac constraint scheme. This is within the framework 
of local theory and its result is in agreement with submanifold quantum mechanics if we 
select Weyl ordering (Ikegami ei al 1992, Matsutani 1993b). Thus submanifold quantum 
mechanics appears to be well defined. 

If the differential operator defined over the 
submanifold is a natural object, it should c m y  the geometrical information. Does the 
differential equation given through the submanifold quantum scheme reflect the symmetry? 

Mathematically the question means ‘does the Atiyah-Singer-type index theorem exist 
for the submanifold system?. The AtiyahSinger index theorem unifies the analysis and 
the geometry in mathematics (Atiyha and Singer 1968a, b, Gilkey 1984, Nakahara 1990). 
There is a well defined analogy between them, in the meaning of category theory, and both 
give the same invariant or an integer. Physically this is related to the anomaly that is a 

However, a further question arises. 
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kind of twist in the functional space of fermionic quantum fields; the integration of the 
anomaly over the base space generates the index theorem. However, it is for a manifold 
with and without boundary including a fibre bundle. Though in the theorem for the manifold 
with boundary we come across the characteristic terms consisting of an extrinsic curvature 
along the boundary, it could not be extended to, a~submanifold system in general; e.g. the 
dimension of a boundary must be equal to the dimension of the manifold minus one (for 
example, Branson and Gilkey 1992). We require a canonical differential operator for the 
submanifold system and a new index theorem for the submanifold system. However, the 
requirement has been partially satisfied by the author who found a new Atiyah-Singer-type 
index theorem for a rod on two-dimensional space R2 in terms of the Dirac operator which 
is naturally defined in the submanifold quantum scheme (Matsutani 1994a). Physically we 
discovered a new anomaly in the fermionic field theory related to the submanifold system. 
Our main purpose in this article is to generalize the anomaly of the rod in R2 to one in R3. 
The generalization gives the direction for a rod on Rn (Matsutani 1994b). 

In general, the geometric part of an anomaly is related to an integrable equation 
(Fujikawa 1979, Nakahara 1990). In our anomaly, the geometrical object is regarded 
as a loop soliton if the fermionic system satisfies a certain condition. By studying the 
submanifold quantum system, the physical meaning of the quantum mechanics of soliton 
physics was revealed by Tsuru and the, author (Matsutani and Tsuru 1992). While a thin 
elastic rod on R* is governed by the modified Korteweg-de Vries (MKdV) equation,. the 
Dirac operator in the rod agrees with the Lax operator of the MKdV equation. When the 
fermionic system and the base rod system are adiabatically coupled, the energy spectrum of 
the fermion does not depend on the time development of the base space and it represents the 
infinite conserved quantities of the motion of the rod. In other words, the fictitious quantum 
mechanics in soliton physics for the MKdV equation is realized as the Dirac fermionic system 
confined in a thin elastic rod (Matsutani and Tsuru 1992, Matsutani 1994a, b). 

On the other hand, an elastic rod in R3 obeys the nonlinear Schrodinger equation (NLSE) 
and it is known as the Hashimoto vortex soliton (HVS) (Hashimoto 1972, TSUN 1987). The 
author applied our theory to the D i m  system on an elastic rod in R3 (Matsutani 1994b). 
Then we found that the Dirac equation is in agreement with Lax's eigenvalue equation of 
the "E. Accordingly the generalization that we will perform appears to have geometrical 
meaning. 

Recently the shape effect on a real material has been studied. Tokihiro and Hanamura 
(1993) considered the linear response of excitons in a curved polymer. Alternatively, a 
large polymer, e.g. DNA, sometimes behaves like an elastica in R3 that is governed by 
the NLSE (Tsuru and Wadati 1986, T s w  1987). Furthermore the topology of DNA on the 
configuration space is very important: one is concerned about whether it is knotted or 
unknotted or whether it is twisted or not (Schlick and Olson 1992, Shaw and Wang 1993). 
In this article, we will not deal with the knot of a rod directly but introduce an index related 
to the geometry of the submanifold, the summation of the signed crossings of the curve. 
Thus it is of physical interest to investigate the relation between the fermion on a curved 
rod and the configuration of the curve as a model of the anomaly between the electron and 

In this article, we will generalize the anomaly for a Dirac field in a thin rod on R2 to 
one on R3 and investigate its geometrical meaning. In the derivation of the anomaly we 
will use Fujikawa's procedure (Fujikawa 1979) because it is a natural strategy. 

the DNA. 
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2. Geometry 

We will consider a one-dimensional non-relativistic closed thin rod in three-dimensional flat 
space R3; its centre axis is a space curve C. We express a point along the curve C in R3 
in terms of a vector r(q'), where q' is its arclength. The length of the rod I is sufficiently 
large. We have an orthonormal system along C (nl, 712, 713) with fixing 711 as the tangent 
unit vector; 711 = air, where 81 := a/aql. We first make them satisfy the Frenet-Serre 
relation (Guggenheimer 1963), 

Here k = a,@ is the curvature, t = 318 is the Frenet-Serret torsion and they are functions 
of only 4'. We rotate the orthonormal frame SO(2) fixing a1 := 711 so that we obtain 
(a', az, as) (da Costa 1981, Matsutani 1994b), 

where K ]  := k cos 8, K~ := k sin B and 

B := r' t dq' 

For convenience, we define the complex curvature as 

(2.4) I U, := U I  +iuz  = ~ ( K I  + iKz) = 'ke".  2 

If the rod is an elastica without elastic torsion, it obeys (Hashimoto 1972, Tsuru 1987) 

ia,u, - $a& +21~,1~1~, = 0. (2.5) 

Here we use the terminology 'elastic torsion' (TSUN 1987). The elastic torsion can exist 
even if there is no Frenet-Serret torsion. Even for a straight line, the rod can twist and give 
elastic torsion. However in (2.5) the elastic torsion was neglected. 

3. Dirac field on a rod in R3 

Let us constrnct a Dirac equation in a thin rod (Matsutani and Tsuru 1992, Matsutani 
1994a,b). If one prefers a moving elastic rod, our theory can easily be extended to a 
dynamic thin elastic rod after we set up the theory of the Dirac field in a static rod (Matsutani 
1994b). Thus for the sake of simplicity, we will only deal with a static thin rod in this 
article. 

The position L. = (XI, x2, x 3 )  deviating from C in R3 written in Cartesian coordinates, 
can be expressed in terms of a curved coordinated system: 

x = T + a2qz + a3q3. (3.1) 
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Here the Latin indices (x i ,x j3 .  ..) indicate Cartesian coordinates and the Greek indices 
(q,, q', . . .) curved coordinates along C. We have a tetrad in the vicinity of the rod 
{ I  . _ a  x i .  ,'- P . 

ti, = (1 - hs,l)a', not summed over /L (3.2) 

h(q') := Kz(q1k2 +K3(q1)q3. (3.3) 

where a, := a/aq@. and 

Next., we extend R3 space to (3 + I)-dimensional spacetime. Let us use Euclidean 
fermionic field theory. Let /I run from 0 to 3; the imaginary time of the fermionic system 
is qo xo,  cop := sofl and ci0 := ato. The original Lagrangian density is given by 

(3.4) ~ ( 3 + 1 ) D  = I V ( ~  . -  i ai - mo - V)V 

where the (3 + 1)-dimensional y-matrix y' is a 4 x 4 constant matrix, ai := a/ax', mo is 
the bare mass and V is a confinement potential, V := ((4')' + (q3)')/ZS with S + 0. The 
potential V is not coupled with yo and behaves like a mass so that we can avoid the Klein 
paradox on the confinement (Matsutani 1994a, for example Greiner 1990). (It is known that 
the Dirac particle cannot be confined in terms of the potential coupled with y o  in a region 
smaller than the Compton wavelength because the particle is exchanged with the antiparticle 
at the barrier owing to the distortion of the Dirac sea. However, since we effectively change 
its mass now, the Compton wavelength can be extremely small and, due to the mass-like 
potential, the particle cannot interact directly with the antiparticle.) In terms of the curved 
system, the Lagrangian density can be expressed by 

L ( ~ + I ) ~  = cGi(yfia, - ko - V)Y + o(q2, q3) (3.5) 

where y' := y'ti ', and := det(<L) = 1 - h. Because of the measure, (1 - h )  d3q, in 
the action integral, the space derivative ia, cannot become Hermite. In order to avoid the 
difficulty, we redefine the field as *(3+1'0 = (1 - h)@Y (Matsutani 1994a). 

Let us take the squeezing limit 6 --f 0. Here (q2, q3 )  vanishes and h approaches 1. The 
Lagrangian density along the rod becomes 

L [ $ , @ , U ~ , ~ Z ]  =Gi(p+m)* (3.6) 

where @(qo, 4')  := @("+')D(qp)Iq'H~.q"~,  m is a renormalized mass with the ground energy 
of V and 

D := roao + yla l  + f y ' ~ l +  $ y * ~ ~ .  (3.7) 

After taking the confinement limit, the y-matrix y, becomes independent of 4'. 

express 
In order to simplify the argument, we will take the massless limit from now on. We 
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Here Sq: is the integral region of the qO-direction and is sufficiently large. The Dirac 
equation becomes (Matsutani 1994b) 

W E  = i(yoy'al + y0yzul  + Y ~ Y ~ u ~ ) $ ~  (3.8) 

where U, := ~ ~ / 2 .  In (3.8), we choose the expression for the ymatrices in (3 + 1)- 
dimensional spacetime to be 

0 -i o )  y ~ = ( , ~  o u  03) Y Z = ( ~ ]  0 U1 o )  y 3 = ( D 2  o u  R ) -  
(3.9) 

Equation (3.10) has the same form as the Lax eigenvalue equation of the "5, i.e. the HVS 
(Hashimoto 1972, for example Drazin and Johnson 1989). Thus if we deal with an elastic 
rod, our quantum system is isomorphic to the quantum mechanics of the soliton (Matsutani 
1994b). 

In terms of the confinement prescription, we obtain the (1 + 1)-dimensional partition 
function (Matsutani 1994a) 

Z h , u z l  = / D d D @ e x p (  - / d 2 q L [ $ , @ , u ~ , u ~ l  (3.11) 

4. Gauge transformation 

We will consider the gauge transformation in our system. In the elastica problem, the shape 
of the rod makes the parity break down. Thus the gauge transformation in our problem is 
associated with the parity transformation (Matsutani 1994a). 

Let us perturb the curvature U'S around themselves for space direction (Matsutani 1994a). 
For an infinitesimal transformation, 

up H U;( := up(q' )  -a1ap(q') 

L[$, @, U;, U;] = L[$, @, V I  I YI - ial0rl+y2+- ia1a2+y3@. (4.2) 

q, q,? = ei(y'y2mi+y'y'w) q ,j ,p = $ei(y'y'at+y'y'az)'s (4.3) 

(4.1) 

the Lagrangian changes as 

This extra term is cancelled by the gauge transformation 

if a's satisfy the relation 
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Here Z is defined by 

I : 230 l-b -Do (4.5) 

and we impose the condition that it acts only on the differential operator. The transformation 
(45) has no physical meaning in relativistic manifold physics. However, in non-relativistic 
submanifold physics the embedding breaks the parity in the system locally and (4.5) is 
regarded as a physical transformation (see the appendix). 

We rewrite the a's as 

a1 =: ula a 2  = u2a. (4.6) 

Let us follow Fujikawa's prescription for an anomaly (Fujikawa 1979, Balachandran et 
al 1982, Matsutani 1994a). On the quantum level, the partition function changes as follows: 

Z [ u i ,  U;] = j D$D* exp (- j dzq L[$, @. U;, U;]) =: ZI 

(4.7) 

Due to the natural relation between the left and right derivatives on the Dirac operator 
(Matsutani 1994a), we can expand the field by a complete set: 

sa tis fy i n g 

with normalization 

j x.'(q)gom(q)d2q = 6.h. 

The fermionic measure is expressed by 

D+ D$ = n dam dim.  
m 

Then transformation (4.3) becomes 

Let us cast the fermionic Jacobian in the transformations 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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Since they are Grassmannian variables, the Jacobian (8@&$)/(&@'8$') is expressed by 
(Fujikawa 1979) 

where 

= :exp[ -i]d2qa(q1)A(q)], 

(4.14) 

(4.15) 

Here R(q) is ill defined and we must therefore regularize. it. We adopt the heat kernel 
regularization procedure here (Fujikawa 1979, Balachandran er a1 1982). The heat kernel 
is defined as (Gilkey 1984) 

and we redefine A(q), 

For small r ,  we can expand K asymptotically (Gilkey 1984) 

The coefficient of the expansion is written by 

e l  = -i(y'yzalul + Y i y 3 a l ~ 2 )  + U: + U;. 
The trace over the spin space generates the factor 4 and we have 

(4.19) 

1 

1 

A(q) = - i z  t r ( h 2 u l  + Y ~ Y ~ U ~ ) ( Y ~ Y * ~ ~ U ~  +y1y3alu2) 

(4.20) 

Noting that neither does 5 have any effect on this procedure, we have the same term from 
the b,'s and we obtain the Jacobian 

= -i-(ulalul + uzalu2).  

(4.21) 

Accordingly we evaluate the variation of the partition function (4.7) under gauge 
transformation (4.1). 
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5. Anomaly and index theorem on a submanifold 

Let us derive the boson-fermion correspondence. The Ward-Takahashi identity in (4.7) 

gives an anomaly 

Recalling (2.4). we obtain 

(5.3) 

where 8; does not act on 0. If we define r2 := yzeY1yc, it seems to be constant in 4'. 
Noting the periodicity of the fermionic fields, we define 

Choosing an appropriate initial point q:, we integrate (5.3) over q' and obtain 

1 1 
2n 2n (J+ - J - )  = -k = -al#,. (5.5) 

The right-hand side is regarded as the absolute value of the NLSE soliton if the rod is an 
elastica. If we integrate it again, we obtain the global properties of the system: 

(5.6) 
1 

/ ~ d q l  (J+ - J - )  = z(#,(O - #,(OD. 

Since the rod we are considering is closed. the right-hand side gives an integer. It is 
worthwhile noting that (5.5) and (5.6) do not depend upon the starting point qi because of 
the periodicity at q; in (5.5). If we define the projection 

il : C + C' with i7 : 0 ( q ' ) H O  (5.7) 

the right-hand side of (5.6) indicates the sum of the signed intersection number of the curve 
C'. We chose 0 at 

Here we will investigate the geometrical meaning of the right-hand side of (5.6) 
k := ( # , ( I )  - g(O))/(2n)  (Matsutani 1994a). The /I seems to be associated with the 
winding number around a circle SI, i.e. the fundamental group rrl(S1) (Nakahara 1990). 
Let us show how this is realized geometrically in terms of a closed loop. 

In knot theory, one sometimes deals with a link diagram instead of the knot itself; 
the link diagram KG is given through the projection of a (knotted or unknotted) loop K 

as its origin, i.e. B(q;) = 0. 
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Fipre 1. Reidemeister moves. From the classification 
of a knot. we divide the set of link diagrams by the 
equivalent class defined by the Reidemeister moves. 

Figure 2. For a space curve C in (a), n maps from 
C in (a) to C‘ in (b). In terms of C‘. we define the 
diagram Ch. 

in W3 to one in W2 (for example Kauffman 1988). Kc consists of crossings and curved 
segments. For a link diagram defined over R2, we can use the Reidemeister moves (figure 1). 
Equation (5.7) is the projection of a loop in W3 to one on RZ. Thus we could use the result 
from knot theory. 

We introduce a diagram Cb associated with C. Due to (5.7), we define a diagram 
C’, consisting of vertices and segments (figure 2).  We affix an arrow along C’ so that its 
direction corresponds to the orientation of the coordinate q L  in C and choose a starting 
point <; along C’. We mace the curve along the arrow of C’ from starting point <:. When 
we first encounter each vertex, we draw a connected curve over it so that the curve that we 
are drawing now appears to be on another that we will draw. Accordingly on the second 
encounter with the vertex, we divide the segment into two pieces. When the drawing 
returns to the starting point, we obtain a new diagram, that is, Cb (figure 2(c)). Due to 
the definition, Cb is an unknotted link diagram. For diagram Cb, we will introduce the 
‘winding’ number. We assign the integer for the diagram 

w ( x ) = l  and w(X)=-l (5.8) 

and 

w(O)=l and w(O)=-l. (5.9) 
Summation (5.8) over the crossings is the same as the writhe number (Kauffman 1988). 

number on the Reidemeister moves (figure 1): 
When we refer to a part of the diagram C& to GO, we will evaluate the ‘winding’ 

(5.10) 
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Accordingly w(Ch(q,!)) does not depend upon the starting point Q;. Furthermore it is clear 
that /I is in agreement with w(C&). As we noted below (5.6), /I = w(Cb) does not depend 
on the initial point q: and hence we can uniquely define the ‘winding’ number for a space 
curve C, w(C)  := w(Cb). We, therefore, geometrically construct I.L as 

p = w(C).  (5.1 1) 

Hence the right-hand side of (5.6) /I is the geometrical object. 
The gauge field U is excited by a shoe-range force along the rod if the rod is an 

elastica. Thus it could not carry the long-range information as the long-range force, e.g. the 
electromagnetic force, gives the knot invariant as the linking number or the mutual induction 
(Witten 1990); the long-range force traverses the shortest course between the segments of 
the rod in W3 and then the segments interact and exchange their long-range information. 
The geometrical index p is given by the integration of the local quantity and thus it is 
not directly connected with the knot invariant. However, for any knotted or unknotted 
closed loops, we can geometrically derive /I using the above scheme. Hence one should 
regard fi  as a geometrical index related to the homotopy group X I  (S’). Furthermore the 
real DNA sometimes experiences a topological change, e.g. the transition from a knotted to 
an unknotted state. Before and after such a wsi t ion  w(C) might be conserved. We thus 
conclude that the index f i  has geometrical meaning. 

Since the geometrical index on the right-hand side is given through the projection ll 
(5.7), the left-hand side of (5.6) is also well defined under the projection. In fact in  (5.3), 
if we make B vanish, we can replace 8;  with the ordinary partial differential al. In other 
words, our analytic index, the left-hand side of (5.6). is related to the algebraic structure 
of the Dirac operator D ~ D  in a rod on Wz: the structure of D ~ D  is embedded in that of 
D. As we show in the appendix, the analytic part is well defined after the projection and 
is guaranteed by the inverse scattering method on the MKdV equation (Drazin and Johnson 
1989). In such considerations, the left-hand side is a type of difference between the right 
and left moving fields. Accordingly the left-hand side in (5.6) should be regarded as an 
analytic index. 

Therefore (5.6) can be considered as the new index theorem related to the geometry of 
the submanifold. 

Finally we will comment on the assumptions we have employed. Even though we dealt 
with the Dirac equation, our theory is non-relativistic. There is no contradiction arising from 
the thickness problem in relativistic theory. We should also note that the time direction in 
our theory does not play an important role because we add the flat R‘ over the rod as the 
time: due to the Poincare lemma, it can shrink to its origin homotopically and we need not 
consider the geometry for the direction. In fact, (5.6) does not explicitly depend upon time 
direction. Furthermore although we assumed that the length of the rod is sufficiently large, 
it is not difficult to develop the theory with a finite length 1. 

We thus conclude that our index theorem has geometrical meaning. 

6. Conclusion 

In this article, we have found the anomaly related to the submanifold system and the 
submanifold index theorem even though it is for a one-dimensional submanifold in W3, 

Thus we summarize our index theorem as follows: 
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Theorem. (i) For a closed space curve C E R', we can drawthe new curve C' so that the 
Frenet-Sere torsion of C ( r  = as@ vanishes over all C. The 'winding' number can be 
defined over C', w ( C )  and is the geometrical index related to the homotopy group nl(S1): 

@ = w(C). (6.1) 

(ii) We restrict the Dirac operator defined over the tubular neighbourhood of C and the 
time RI to that along C x RI and obtain the Dirac operator D = Pom. 

We define the analytic index related to the map D as 

where 

(6.4) 

(iii) Both indexes 

Anomaly (5.5) is given as the local version of the above theorem. In the theorem, we 
use the fact that the time direction can be regarded as the auxiliary axis in our theory. 

As we have formulated the anomaly for a rod in R', we can easily generalize this to a 
rod in Rn for n > 3 (Matsutani 1994b). 

In our generalization from the Dirac operator on R2 to that in It3, we could not express 
the elastic torsion of the rod (Tsuru 1987). However, following the argument of Takagi and 
Tanzawa (1992), we may deal with it in terms of fermionic theory. In their theory for a 
Schrodinger particle instead of a Dirac particle, we can deal with its angular momentum 
around the rod. Thus we might express the twist of the rod in terms of their theory. 

Recently Burgess and Jensen (1993) generalized our Dirac system on a rod to one on 
a curved surface in the flat space R3. A question arises as to whether their Dirac system is 
connected with the index theorem for a higher-dimensional submanifold in It'. 

After submitting this paper, the author found that Shi and Hearst (1994) had applied the 
NLSE to the configuration of DNA and discovered the various shapes of DNA. It is expected 
that a concrete calculation of the fermionic field over it will be performed. 

and U agree. 

Appendix 

In this appendix, we will give the algebraic structure of the analytic index of the Dirac 
operator in a rod on RZ (Matsutani 1994a). Therefore the notation in this appendix may 
differ from that in the main sections, but one can naturally translate them. 
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The Dirac operator in a rod on Rz is obtained if we project ’D in R3 as 0 = 0: 

’D2D := p a o  +  la, + y2u. (AI) 

Since this is a special case of ’D, we can use the arguments in this article. For the operator 
and r := ily’y’, we have the relations 

{r,’DW]=r’DzD+’D2Dr=o and rz,=i. (-42) 

Here r behaves like y 5  in the chiral anomaly (Fujikawa 1979). However it is related to 
the parity transformation (Alvarez-GaumB, Pietra and Moore 1985) because for (2  + 1)- 
dimensional spacetime r = %yo and the (1 + 1)dimensional Dirac field confined in a rod 
on R2 still preserves the information of (2 + 1)-dimensional spacetime. Since our time 
direction qo has no geometrical structure and should be regarded as the auxiliary axis, the 
l operator (4.5) has physical meaning. Then P* := (1 i r) is regarded as the projection 
operator. For the base functions (4.8) with B = 0, if we divide the function space {&) into 
two parts (@*,,,) in terms of P+, the set of non-zero modes {@+m[Am # 0) is bijective to 
(@-,,lAm # 0) and this is me for (xm}.  Hence only the zero modes A, = 0 contribute an 
analytic index 

[ dq2 x L W m  = [ dq’( C X J m @ + m  - 1 X-m@-m 

(A31 

m +m -m + I  
1 = - 

211 dq’ dE aj(&y2@E) =: WO. 

Let us introduce the trace of the operator in the function space associated with (4.17). 

A&, 5 )  := Trre-(i*2D)2r. (A41 

We can then easily prove that it does not depend on 5 ,  &d~(q,  5 )  = 0 using (U). 
Therefore we have the identity 

&0(4 , t  = 00) = d z o ( 4 ,  t = 0) (A5) 

and both sides give the indices along (A3) and (4.18) (Matsutani 1994a): 

&(q, t = 00) = WO (A6) 

Due to periodicity uo vanishes. Thus for ’Dw, the anomaly corresponding to (5.3), which 
is a local version of (A3), is also determined by the zero modes Am = 0 and the index uo 
is trivial, i.e. vo = 0. 

However, we can introduce another index theorem such as (5.6). We define the indices 

1 
211 

and t = 0) = - (%@(l)  - al@(O)) =: KO. 

as 

1 
WZD := dq @EEY @E PZD := z(@(O - @(O)) (A7) 

I - +  

and obtain the index theorem related to the submanifold system as (Matsutani 1994a) 

VZD = KZD. (As) 
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This is intrinsically the same as (5.6) and is also considered as its special case. Equation (A7) 
may be regarded as the transgression of (A6) (Gilkey 1984). 

We can then find the geometrical meaning in the geometrical index !4D as we did in 
section 5. 

On the other hand, the analytic index UZD is a type of difference between the right and 
left moving fields, which are given through the projection Pi. Since UZD is also given 
through the zero mode of (AI), it is determined in the frame of the classical field theory; 
A, = 0 gives the classical equation of motion of the field. Thus we can use ine argument in 
the inverse scattering method of the MKdV (for example, Drazin and Johnson 1989), that is 
mathematically in the framework of classical field theory. In the inverse scattering method 
of soliton theory, we consider the map from the function space at s = 0 to that at s = I 
and its inverse map; they are related to the scattering data. The kernel part of these maps 
correspond to the bounded state and the soliton solutions. The difference in dimension 
of both kernel parts, i.e. the index of the map, corresponds to the number of differences 
between the positive and negative MKdV solitons. The map (the inverse map) is related to 
maps between the right and left moving fields. Accordingly UZD is naturally understood and 
is regarded as the analytic index. 

To the Duac operator D in a rod in R3, we can apply the above argument. Then instead 
of r, the operator i? := y1y2eY'Y'@ play the same role in the system though [?, D} # 0. Due 
to the~property, 31 appears in (5.3). Thus we should regard the algebraic structure generating 
to (5.6) as the pull-back of the projection to the structure of D20. The projection is given 
through ll in (5.7) and the difficulty in the map comes from the fact that [n, a l l  # 0. 
However, under such a meaning, the algebraic structure in our analytic system is well 
defined when it generates the analytic index (5.6). 
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